Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.852
Filtrar
1.
Neuropharmacology ; 251: 109918, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527652

RESUMO

Acute poisoning with organophosphorus cholinesterase inhibitors (OPs), such as OP nerve agents and pesticides, can cause life threatening cholinergic crisis and status epilepticus (SE). Survivors often experience significant morbidity, including brain injury, acquired epilepsy, and cognitive deficits. Current medical countermeasures for acute OP poisoning include a benzodiazepine to mitigate seizures. Diazepam was long the benzodiazepine included in autoinjectors used to treat OP-induced seizures, but it is now being replaced in many guidelines by midazolam, which terminates seizures more quickly, particularly when administered intramuscularly. While a direct correlation between seizure duration and the extent of brain injury has been widely reported, there are limited data comparing the neuroprotective efficacy of diazepam versus midazolam following acute OP intoxication. To address this data gap, we used non-invasive imaging techniques to longitudinally quantify neuropathology in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP) with and without post-exposure intervention with diazepam or midazolam. Magnetic resonance imaging (MRI) was used to monitor neuropathology and brain atrophy, while positron emission tomography (PET) with a radiotracer targeting translocator protein (TSPO) was utilized to assess neuroinflammation. Animals were scanned at 3, 7, 28, 65, 91, and 168 days post-DFP and imaging metrics were quantitated for the hippocampus, amygdala, piriform cortex, thalamus, cerebral cortex and lateral ventricles. In the DFP-intoxicated rat, neuroinflammation persisted for the duration of the study coincident with progressive atrophy and ongoing tissue remodeling. Benzodiazepines attenuated neuropathology in a region-dependent manner, but neither benzodiazepine was effective in attenuating long-term neuroinflammation as detected by TSPO PET. Diffusion MRI and TSPO PET metrics were highly correlated with seizure severity, and early MRI and PET metrics were positively correlated with long-term brain atrophy. Collectively, these results suggest that anti-seizure therapy alone is insufficient to prevent long-lasting neuroinflammation and tissue remodeling.


Assuntos
Lesões Encefálicas , Estado Epiléptico , Ratos , Animais , Diazepam/farmacologia , Midazolam/farmacologia , Midazolam/uso terapêutico , Isoflurofato/farmacologia , Organofosfatos , Doenças Neuroinflamatórias , Neuroproteção , Ratos Sprague-Dawley , Encéfalo/metabolismo , Benzodiazepinas/farmacologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Proteínas de Transporte/metabolismo , Imageamento por Ressonância Magnética , Lesões Encefálicas/metabolismo , Atrofia/patologia
2.
Neuropharmacology ; 249: 109895, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437913

RESUMO

Acute intoxication with organophosphate (OP) cholinesterase inhibitors poses a significant public health risk. While currently approved medical countermeasures can improve survival rates, they often fail to prevent chronic neurological damage. Therefore, there is need to develop effective therapies and quantitative metrics for assessing OP-induced brain injury and its rescue by these therapies. In this study we used a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP), to test the hypothesis that T2 measures obtained from brain magnetic resonance imaging (MRI) scans provide quantitative metrics of brain injury and therapeutic efficacy. Adult male Sprague Dawley rats were imaged on a 7T MRI scanner at 3, 7 and 28 days post-exposure to DFP or vehicle (VEH) with or without treatment with the standard of care antiseizure drug, midazolam (MDZ); a novel antiseizure medication, allopregnanolone (ALLO); or combination therapy with MDZ and ALLO (DUO). Our results show that mean T2 values in DFP-exposed animals were: (1) higher than VEH in all volumes of interest (VOIs) at day 3; (2) decreased with time; and (3) decreased in the thalamus at day 28. Treatment with ALLO or DUO, but not MDZ alone, significantly decreased mean T2 values relative to untreated DFP animals in the piriform cortex at day 3. On day 28, the DUO group showed the most favorable T2 characteristics. This study supports the utility of T2 mapping for longitudinally monitoring brain injury and highlights the therapeutic potential of ALLO as an adjunct therapy to mitigate chronic morbidity associated with acute OP intoxication.


Assuntos
Lesões Encefálicas , Intoxicação por Organofosfatos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Isoflurofato/toxicidade , Organofosfatos , Inibidores da Colinesterase/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Intoxicação por Organofosfatos/patologia , Lesões Encefálicas/induzido quimicamente , Encéfalo , Midazolam/farmacologia
3.
Arch Toxicol ; 98(4): 1177-1189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305864

RESUMO

Recent experimental evidence suggests combined treatment with midazolam and allopregnanolone is more effective than midazolam alone in terminating seizures triggered by acute organophosphate (OP) intoxication. However, there are concerns that combined midazolam and allopregnanolone increases risk of adverse cardiovascular events. To address this, we used telemetry devices to record cardiovascular responses in adult male Sprague-Dawley rats acutely intoxicated with diisopropylfluorophosphate (DFP). Animals were administered DFP (4 mg/kg, sc), followed immediately by atropine (2 mg/kg, i.m.) and 2-PAM (25 mg/kg, i.m.). At 40 min post-exposure, a subset of animals received midazolam (0.65 mg/kg, im); at 50 min, these rats received a second dose of midazolam or allopregnanolone (12 mg/kg, im). DFP significantly increased blood pressure by ~ 80 mmHg and pulse pressure by ~ 34 mmHg that peaked within 12 min. DFP also increased core temperature by ~ 3.5 °C and heart rate by ~ 250 bpm that peaked at ~ 2 h. Heart rate variability (HRV), an index of autonomic function, was reduced by ~ 80%. All acute (within 15 min of exposure) and two-thirds of delayed (hours after exposure) mortalities were associated with non-ventricular cardiac events within 10 min of cardiovascular collapse, suggesting that non-ventricular events should be closely monitored in OP-poisoned patients. Compared to rats that survived DFP intoxication without treatment, midazolam significantly improved recovery of cardiovascular parameters and HRV, an effect enhanced by allopregnanolone. These data demonstrate that midazolam improved recovery of cardiovascular and autonomic function and that the combination of midazolam and allopregnanolone may be a better therapeutic strategy than midazolam alone.


Assuntos
Midazolam , Intoxicação por Organofosfatos , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Midazolam/farmacologia , Midazolam/uso terapêutico , Pregnanolona/farmacologia , Isoflurofato/farmacologia , Organofosfatos , Encéfalo , Intoxicação por Organofosfatos/tratamento farmacológico
4.
J Pharmacol Exp Ther ; 388(2): 416-431, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977810

RESUMO

Children are highly vulnerable to the neurotoxic effects of organophosphates (OPs), which can cause neuronal developmental defects, including intellectual disability, autism, epilepsy, and related comorbidities. Unfortunately, no specific pediatric OP neurotoxicity model currently exists. In this study, we developed and characterized a pediatric rat model of status epilepticus (SE) induced by the OP diisopropylfluorophosphate (DFP) and examined its impact on long-term neurological outcomes. Postnatal day 21 rats were exposed to a DFP regimen with standard antidotes. Progressive behavioral deteriorations were assessed over a three-month period. Development of epileptic seizures, ictal discharges, high-frequency oscillations (HFOs), and interictal spikes were monitored by video-electroencephalography recordings. Histology-stereology analysis was performed to assess neurodegeneration, neuroinflammation, and morphologic abnormalities. DFP-exposed, post-SE animals exhibited significantly elevated levels of anxiety and depression than age-matched controls at 1, 2, and 3 months post-exposure. DFP-exposed animals displayed aggressive behavior and a marked decline in object recognition memory, as well as prominent impairment in spatial learning and memory. DFP-exposed animals had striking electrographic abnormalities with the occurrence of displayed epileptic seizures, ictal discharges, HFOs, and interictal spikes, suggesting chronic epilepsy. Neuropathological analysis showed substantially fewer principal neurons and inhibitory interneurons with a marked increase in reactive microglia and neuroinflammation in the hippocampus and other brain regions. DFP-exposed animals also exhibited mossy fiber sprouting indicating impaired network formations. Long-term epileptic seizures and neuropsychiatric functional deficits induced by DFP were consistent with neuropathological defects. Collectively, this pediatric model displays many hallmarks of chronic sequelae reminiscent of children exposed to OPs, suggesting that it will be a valuable tool for investigating pathologic mechanisms and potential treatment strategies to attenuate long-term OP neurotoxicity. SIGNIFICANCE STATEMENT: Millions of children are exposed to organophosphates (OPs) used in agriculture or chemical incidents. This study investigated the long-term impact of neonatal exposure to the OP chemical diisopropylfluorophosphate (DFP) on neurobehavioral and neurodevelopmental outcomes in adulthood. DFP exposure caused long-lasting behavioral abnormalities, epileptic seizures, and bilateral brain defects with an array of neurological sequelae seen in children's OP neurotoxicity. Thus, this model provides a novel tool to explore therapeutic interventions that mitigate long-term neurotoxic effects of children exposed to OP-induced seizures and status epilepticus.


Assuntos
Epilepsia , Estado Epiléptico , Humanos , Criança , Ratos , Animais , Isoflurofato/toxicidade , Organofosfatos/efeitos adversos , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Modelos Animais de Doenças
5.
J Pharmacol Exp Ther ; 388(2): 451-468, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37863488

RESUMO

Children are much more susceptible to the neurotoxic effects of organophosphate (OP) pesticides and nerve agents than adults. OP poisoning in children leads to acute seizures and neuropsychiatric sequela, including the development of long-term disabilities and cognitive impairments. Despite these risks, there are few chronic rodent models that use pediatric OP exposure for studying neurodevelopmental consequences and interventions. Here, we investigated the protective effect of the neurosteroid ganaxolone (GX) on the long-term developmental impact of neonatal exposure to the OP compound, diisopropyl-fluorophosphate (DFP). Pediatric postnatal day-28 rats were acutely exposed to DFP, and at 3 and 10 months after exposure, they were evaluated using a series of cognitive and behavioral tests with or without the postexposure treatment of GX. Analysis of the neuropathology was performed after 10 months. DFP-exposed animals displayed significant long-term deficits in mood, anxiety, depression, and aggressive traits. In spatial and nonspatial cognitive tests, they displayed striking impairments in learning and memory. Analysis of brain sections showed significant loss of neuronal nuclei antigen(+) principal neurons, parvalbumin(+) inhibitory interneurons, and neurogenesis, along with increased astrogliosis, microglial neuroinflammation, and mossy fiber sprouting. These detrimental neuropathological changes are consistent with behavioral dysfunctions. In the neurosteroid GX-treated cohort, behavioral and cognitive deficits were significantly reduced and were associated with strong protection against long-term neuroinflammation and neurodegeneration. In conclusion, this pediatric model replicates the salient features of children exposed to OPs, and the protective outcomes from neurosteroid intervention support the viability of developing this strategy for mitigating the long-term effects of acute OP exposure in children. SIGNIFICANCE STATEMENT: An estimated 3 million organophosphate exposures occur annually worldwide, with children comprising over 30% of all victims. Our understanding of the neurodevelopmental consequences in children exposed to organophosphates is limited. Here, we investigated the long-term impact of neonatal exposure to diisopropyl-fluorophosphate in pediatric rats. Neurosteroid treatment protected against major deficits in behavior and memory and was well correlated with neuropathological changes. Overall, this pediatric model is helpful to screen novel therapies to mitigate long-term developmental deficits of organophosphate exposure.


Assuntos
Fluoretos , Neuroesteroides , Organofosfatos , Fosfatos , Humanos , Criança , Ratos , Animais , Organofosfatos/farmacologia , Doenças Neuroinflamatórias , Compostos Organofosforados/farmacologia , Encéfalo , Isoflurofato/toxicidade
6.
J Pharmacol Exp Ther ; 388(2): 313-324, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37770202

RESUMO

Sex differences are common in human epilepsy. Although men are more susceptible to seizure than women, the mechanisms underlying sex-specific vulnerabilities to seizure are unclear. The organophosphate (OP) diisopropylfluorophosphate (DFP) is known to cause neurotoxicity and status epilepticus (SE), a serious neurologic condition that causes prolonged seizures and brain damage. Current therapies for OP poisoning and SE do not consider neuronal variations between male and female brains. Therefore, we investigated sex-dependent differences in electrographic seizure activity and neuronal injury using the DFP model of refractory SE in rats. Electroencephalogram recordings were used to monitor DFP-induced SE, and the extent of brain injury was determined using fluoro-jade-B staining to detect cellular necrosis. After DFP exposure, we observed striking sex-dependent differences in SE and seizure activity patterns as well as protective responses to midazolam treatment. Following acute DFP exposure, male animals displayed more severe SE with intense epileptiform spiking and greater mortality than females. In contrast, we observed significantly more injured cells and cellular necrosis in the hippocampus and other brain regions in females than in males. We also observed extensive neuronal injury in the somatosensory cortex of males. The anticonvulsant effect of midazolam against SE was limited in this model and found to be similar in males and females. However, unlike males, females exhibited substantially more protection against neuronal damage after midazolam treatment. Overall, these results demonstrate significant sex-dependent differences in DFP-induced refractory SE and neuronal damage patterns, suggesting that it may be possible to develop sex-specific neuroprotective strategies for OP intoxication and refractory SE. SIGNIFICANCE STATEMENT: Sex-dependent differences in neurotoxicity and status epilepticus (SE) are key biological variables after organophosphate (OP) exposure. Here, we investigated sex-dependent differences in SE and brain injury after acute diisopropylfluorophosphate exposure. Male rats had more severe SE and less survival than females, while females had more neuronal damage. Females had more neuroprotection to midazolam than males, while both sexes had similar but partial anticonvulsant effects. These findings suggest that a sex-specific therapeutic approach may prevent neurological complications of OP-induced SE.


Assuntos
Lesões Encefálicas , Intoxicação por Organofosfatos , Estado Epiléptico , Humanos , Feminino , Masculino , Ratos , Animais , Benzodiazepinas/farmacologia , Anticonvulsivantes/efeitos adversos , Midazolam/farmacologia , Isoflurofato/farmacologia , Organofosfatos/farmacologia , Caracteres Sexuais , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Encéfalo , Intoxicação por Organofosfatos/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Necrose/tratamento farmacológico
7.
J Pharmacol Exp Ther ; 388(2): 399-415, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38071567

RESUMO

Organophosphates (OPs) and nerve agents are potent neurotoxic compounds that cause seizures, status epilepticus (SE), brain injury, or death. There are persistent long-term neurologic and neurodegenerative effects that manifest months to years after the initial exposure. Current antidotes are ineffective in preventing these long-term neurobehavioral and neuropathological changes. Additionally, there are few effective neuroprotectants for mitigating the long-term effects of acute OP intoxication. We have pioneered neurosteroids as novel anticonvulsants and neuroprotectants for OP intoxication and seizures. In this study, we evaluated the efficacy of two novel synthetic, water-soluble neurosteroids, valaxanolone (VX) and lysaxanolone (LX), in combating the long-term behavioral and neuropathological impairments caused by acute OP intoxication and SE. Animals were exposed to the OP nerve agent surrogate diisopropylfluorophosphate (DFP) and were treated with VX or LX in addition to midazolam at 40 minutes postexposure. The extent of neurodegeneration, along with various behavioral and memory deficits, were assessed at 3 months postexposure. VX significantly reduced deficits of aggressive behavior, anxiety, memory, and depressive-like traits in control (DFP-exposed, midazolam-treated) animals; VX also significantly prevented the DFP-induced chronic loss of NeuN(+) principal neurons and PV(+) inhibitory neurons in the hippocampus and other regions. Additionally, VX-treated animals exhibited a reduced inflammatory response with decreased GFAP(+) astrogliosis and IBA1(+) microgliosis in the hippocampus, amygdala, and other regions. Similarly, LX showed significant improvement in behavioral and memory deficits, and reduced neurodegeneration and cellular neuroinflammation. Together, these results demonstrate the neuroprotectant effects of the novel synthetic neurosteroids in mitigating the long-term neurologic dysfunction and neurodegeneration associated with OP exposure. SIGNIFICANCE STATEMENT: Survivors of nerve agents and organophosphate (OP) exposures suffer from long-term neurological deficits. Currently, there is no specific drug therapy for mitigating the impact of OP exposure. However, novel synthetic neurosteroids that activate tonic inhibition provide a viable option for treating OP intoxication. The data from this study indicates the neuroprotective effects of synthetic, water-soluble neurosteroids for attenuation of long-term neurological deficits after OP intoxication. These findings establish valaxanolone and lysaxanolone as potent and efficacious neuroprotectants suitable for injectable dosing.


Assuntos
Agentes Neurotóxicos , Fármacos Neuroprotetores , Neuroesteroides , Intoxicação por Organofosfatos , Compostos Organotiofosforados , Estado Epiléptico , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neuroesteroides/uso terapêutico , Isoflurofato/farmacologia , Midazolam/farmacologia , Doenças Neuroinflamatórias , Encéfalo , Agentes Neurotóxicos/farmacologia , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Convulsões/tratamento farmacológico , Intoxicação por Organofosfatos/tratamento farmacológico , Organofosfatos/farmacologia , Transtornos da Memória/patologia
8.
Sci Rep ; 12(1): 20329, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434021

RESUMO

Pesticides account for hundreds of millions of cases of acute poisoning worldwide each year, with organophosphates (OPs) being responsible for the majority of all pesticide-related deaths. OPs inhibit the enzyme acetylcholinesterase (AChE), which leads to impairment of the central- and peripheral nervous system. Current standard of care (SOC) alleviates acute neurologic-, cardiovascular- and respiratory symptoms and reduces short term mortality. However, survivors often demonstrate significant neurologic sequelae. This highlights the critical need for further development of adjunctive therapies with novel targets. While the inhibition of AChE is thought to be the main mechanism of injury, mitochondrial dysfunction and resulting metabolic crisis may contribute to the overall toxicity of these agents. We hypothesized that the mitochondrially targeted succinate prodrug NV354 would support mitochondrial function and reduce brain injury during acute intoxication with the OP diisopropylfluorophosphate (DFP). To this end, we developed a rat model of acute DFP intoxication and evaluated the efficacy of NV354 as adjunctive therapy to SOC treatment with atropine and pralidoxime. We demonstrate that NV354, in combination with atropine and pralidoxime therapy, significantly improved cerebral mitochondrial complex IV-linked respiration and reduced signs of brain injury in a rodent model of acute DFP exposure.


Assuntos
Lesões Encefálicas , Intoxicação por Organofosfatos , Pró-Fármacos , Animais , Ratos , Intoxicação por Organofosfatos/tratamento farmacológico , Atropina/farmacologia , Atropina/uso terapêutico , Pró-Fármacos/farmacologia , Isoflurofato/toxicidade , Ácido Succínico , Acetilcolinesterase/metabolismo , Roedores/metabolismo , Succinatos , Mitocôndrias/metabolismo , Lesões Encefálicas/tratamento farmacológico
9.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897817

RESUMO

Organophosphate (OP) compounds include highly toxic chemicals widely used both as pesticides and as warfare nerve agents. Existing countermeasures are lifesaving, but do not alleviate all long-term neurological sequelae, making OP poisoning a public health concern worldwide and the search for fully efficient antidotes an urgent need. OPs cause irreversible acetylcholinesterase (AChE) inhibition, inducing the so-called cholinergic syndrome characterized by peripheral manifestations and seizures associated with permanent psychomotor deficits. Besides immediate neurotoxicity, recent data have also identified neuroinflammation and microglia activation as two processes that likely play an important, albeit poorly understood, role in the physiopathology of OP intoxication and its long-term consequences. To gain insight into the response of microglia to OP poisoning, we used a previously described model of diisopropylfluorophosphate (DFP) intoxication of zebrafish larvae. This model reproduces almost all the defects seen in poisoned humans and preclinical models, including AChE inhibition, neuronal epileptiform hyperexcitation, and increased neuronal death. Here, we investigated in vivo the consequences of acute DFP exposure on microglia morphology and behaviour, and on the expression of a set of pro- and anti-inflammatory cytokines. We also used a genetic method of microglial ablation to evaluate the role in the OP-induced neuropathology. We first showed that DFP intoxication rapidly induced deep microglial phenotypic remodelling resembling that seen in M1-type activated macrophages and characterized by an amoeboid morphology, reduced branching, and increased mobility. DFP intoxication also caused massive expression of genes encoding pro-inflammatory cytokines Il1ß, Tnfα, Il8, and to a lesser extent, immuno-modulatory cytokine Il4, suggesting complex microglial reprogramming that included neuroinflammatory activities. Finally, microglia-depleted larvae were instrumental in showing that microglia were major actors in DFP-induced neuroinflammation and, more importantly, that OP-induced neuronal hyperactivation was markedly reduced in larvae fully devoid of microglia. DFP poisoning rapidly triggered massive microglia-mediated neuroinflammation, probably as a result of DFP-induced neuronal hyperexcitation, which in turn further exacerbated neuronal activation. Microglia are thus a relevant therapeutic target, and identifying substances reducing microglial activation could add efficacy to existing OP antidote cocktails.


Assuntos
Isoflurofato , Intoxicação por Organofosfatos , Acetilcolinesterase/metabolismo , Animais , Antídotos , Encéfalo/metabolismo , Inibidores da Colinesterase/farmacologia , Citocinas/metabolismo , Humanos , Isoflurofato/metabolismo , Isoflurofato/toxicidade , Microglia/metabolismo , Doenças Neuroinflamatórias , Intoxicação por Organofosfatos/tratamento farmacológico , Intoxicação por Organofosfatos/etiologia , Intoxicação por Organofosfatos/metabolismo , Organofosfatos/metabolismo , Ratos , Ratos Sprague-Dawley , Peixe-Zebra/metabolismo
10.
Neurotoxicology ; 91: 45-59, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35500718

RESUMO

Exposure to high levels of a cholinesterase inhibiting organophosphorus (OP) agent often results in seizures that progress to status epilepticus (SE). Survivors of OP-induced SE often display neuropathological consequences the days following SE. In the current study, the temporal profile of neuropathology after SE was investigated in a rat model of diisopropylfluorophosphate (DFP)-induced SE. Adult Sprague-Dawley rats were injected with DFP to induce SE for one hour. Following termination of electrographic SE with urethane (0.8 g/kg, sc), cohorts of rats were euthanized 3, 24 and 48 h later and brain tissue was processed to determine immediate early gene and inflammatory mediator expression as well as blood-brain barrier changes and neurodegeneration. After SE rats displayed a time-dependent upregulation of immediate early genes such as cFos and ΔFosB as well as pro-inflammatory mediators COX-2, IL-1ß and IL-6. The profile of positive cFos staining, but not ΔFosB, coincided temporally with heightened brain activity measured by cortical electroencephalography (EEG). Neurodegeneration in limbic brain regions was absent 3 h after SE, but prominent 24 h later and continued to increase 48 h after SE. Serum albumin was detected in the cortex 3 h after SE suggesting early loss of blood brain barrier integrity. However, the blood-brain barrier appeared repaired 48 h after SE. This study demonstrates that following OP-poisoning in rats, immediate early gene expression in the brain precedes neuroinflammation followed by erosion of the blood-brain barrier and neurodegeneration. The study also demonstrates that seizure activity in brain nuclei coincides with cFos expression. Together, these studies give insight into the temporal molecular changes in the brain following organophosphate-induced status epilepticus.


Assuntos
Intoxicação por Organofosfatos , Estado Epiléptico , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Isoflurofato/toxicidade , Intoxicação por Organofosfatos/metabolismo , Organofosfatos/efeitos adversos , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/patologia
11.
J Pharmacol Toxicol Methods ; 115: 107173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35545188

RESUMO

Diisopropylfluorophosphate (DFP) is an organophosphate (OP) that is commonly used as a surrogate of OP nerve agents to study the neurotoxic effects of acute OP intoxication. In preliminary studies, we discovered abnormally high incidence of deaths in DMSO control zebrafish larvae housed in the same 96-well plate as DFP-exposed larvae and hypothesized that DFP volatilizes and cross-contaminates wells when using static waterborne exposures. Survivability and acetylcholinesterase activity assays were indicative of the presence of DFP in the tissues of zebrafish ostensibly exposed to DMSO only. These findings are consistent with DFP cross-contamination, which raises concerns for the experimental design of studies evaluating the toxicity of volatile and semi-volatile substances in zebrafish using medium-to-high throughput approaches.


Assuntos
Isoflurofato , Peixe-Zebra , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Animais , Encéfalo/metabolismo , Inibidores da Colinesterase/toxicidade , Dimetil Sulfóxido/farmacologia , Isoflurofato/toxicidade , Larva/metabolismo
12.
J Am Chem Soc ; 143(43): 18261-18271, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677965

RESUMO

Rapid and robust sensing of nerve agent (NA) threats is necessary for real-time field detection to facilitate timely countermeasures. Unlike conventional phosphotriesterases employed for biocatalytic NA detection, this work describes the use of a new, green, thermally stable, and biocompatible zirconium metal-organic framework (Zr-MOF) catalyst, MIP-202(Zr). The biomimetic Zr-MOF-based catalytic NA recognition layer was coupled with a solid-contact fluoride ion-selective electrode (F-ISE) transducer, for potentiometric detection of diisopropylfluorophosphate (DFP), a F-containing G-type NA simulant. Catalytic DFP degradation by MIP-202(Zr) was evaluated and compared to the established UiO-66-NH2 catalyst. The efficient catalytic DFP degradation with MIP-202(Zr) at near-neutral pH was validated by 31P NMR and FT-IR spectroscopy and potentiometric F-ISE and pH-ISE measurements. Activation of MIP-202(Zr) using Soxhlet extraction improved the DFP conversion rate and afforded a 2.64-fold improvement in total percent conversion over UiO-66-NH2. The exceptional thermal and storage stability of the MIP-202/F-ISE sensor paves the way toward remote/wearable field detection of G-type NAs in real-world environments. Overall, the green, sustainable, highly scalable, and biocompatible nature of MIP-202(Zr) suggests the unexploited scope of such MOF catalysts for on-body sensing applications toward rapid on-site detection and detoxification of NA threats.


Assuntos
Materiais Biomiméticos/química , Isoflurofato/análise , Estruturas Metalorgânicas/química , Agentes Neurotóxicos/análise , Catálise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Fluoretos/análise , Química Verde , Isoflurofato/química , Limite de Detecção , Agentes Neurotóxicos/química , Dispositivos Eletrônicos Vestíveis , Zircônio/química
13.
Neurotoxicology ; 87: 106-119, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509511

RESUMO

Organophosphate (OP) nerve agents and pesticides are a class of neurotoxic compounds that can cause status epilepticus (SE), and death following acute high-dose exposures. While the standard of care for acute OP intoxication (atropine, oxime, and high-dose benzodiazepine) can prevent mortality, survivors of OP poisoning often experience long-term brain damage and cognitive deficits. Preclinical studies of acute OP intoxication have primarily used rat models to identify candidate medical countermeasures. However, the mouse offers the advantage of readily available knockout strains for mechanistic studies of acute and chronic consequences of OP-induced SE. Therefore, the main objective of this study was to determine whether a mouse model of acute diisopropylfluorophosphate (DFP) intoxication would produce acute and chronic neurotoxicity similar to that observed in rat models and humans following acute OP intoxication. Adult male C57BL/6J mice injected with DFP (9.5 mg/kg, s.c.) followed 1 min later with atropine sulfate (0.1 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.) developed behavioral and electrographic signs of SE within minutes that continued for at least 4 h. Acetylcholinesterase inhibition persisted for at least 3 d in the blood and 14 d in the brain of DFP mice relative to vehicle (VEH) controls. Immunohistochemical analyses revealed significant neurodegeneration and neuroinflammation in multiple brain regions at 1, 7, and 28 d post-exposure in the brains of DFP mice relative to VEH controls. Deficits in locomotor and home-cage behavior were observed in DFP mice at 28 d post-exposure. These findings demonstrate that this mouse model replicates many of the outcomes observed in rats and humans acutely intoxicated with OPs, suggesting the feasibility of using this model for mechanistic studies and therapeutic screening.


Assuntos
Encéfalo/patologia , Isoflurofato/toxicidade , Estado Epiléptico/induzido quimicamente , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento de Nidação/efeitos dos fármacos , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/psicologia , Teste de Campo Aberto , Estado Epiléptico/patologia , Estado Epiléptico/psicologia
14.
Clin Biochem ; 96: 56-62, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34252447

RESUMO

OBJECTIVES: Camostat mesilate is a drug that is being repurposed for new applications such as that against COVID-19 and prostate cancer. This induces a need for the development of an analytical method for the quantification of camostat and its metabolites in plasma samples. Camostat is, however, very unstable in whole blood and plasma due to its two ester bonds. The molecule is readily hydrolysed by esterases to 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA) and further to 4-guanidinobenzoic acid (GBA). For reliable quantification of camostat, a technique is required that can instantly inhibit esterases when blood samples are collected. DESIGN AND METHODS: An ultra-high-performance liquid chromatography-tandem mass spectrometry method (UHPLC-ESI-MS/MS) using stable isotopically labelled analogues as internal standards was developed and validated. Different esterase inhibitors were tested for their ability to stop the hydrolysis of camostat ester bonds. RESULTS: Both diisopropylfluorophosphate (DFP) and paraoxon were discovered as efficient inhibitors of camostat metabolism at 10 mM concentrations. No significant changes in camostat and GBPA concentrations were observed in fluoride-citrate-DFP/paraoxon-preserved plasma after 24 h of storage at room temperature or 4 months of storage at -20 °C and -80 °C. The lower limits of quantification were 0.1 ng/mL for camostat and GBPA and 0.2 ng/mL for GBA. The mean true extraction recoveries were greater than 90%. The relative intra-laboratory reproducibility standard deviations were at a maximum of 8% at concentrations of 1-800 ng/mL. The trueness expressed as the relative bias of the test results was within ±3% at concentrations of 1-800 ng/mL. CONCLUSIONS: A methodology was developed that preserves camostat and GBPA in plasma samples and provides accurate and sensitive quantification of camostat, GBPA and GBA by UHPLC-MS/MS.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ésteres/sangue , Guanidinas/sangue , Espectrometria de Massas em Tandem/métodos , COVID-19/sangue , Inibidores Enzimáticos/farmacologia , Esterases/antagonistas & inibidores , Esterases/metabolismo , Ésteres/metabolismo , Ésteres/farmacologia , Guanidinas/farmacologia , Humanos , Hidrólise/efeitos dos fármacos , Isoflurofato/química , Isoflurofato/farmacologia , Paraoxon/sangue , Paraoxon/química , Paraoxon/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação , Tratamento Farmacológico da COVID-19
15.
Life Sci ; 281: 119765, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34186043

RESUMO

AIMS: Deployment-related exposures to organophosphate (OP) compounds are implicated for Gulf War Illness (GWI) development in First GW veterans. However, reasons for the persistence of GWI are not fully understood. Epigenetic modifications to chromatin are regulatory mechanisms that can adaptively or maladaptively respond to external stimuli. These include DNA methylation and histone acetylation. DNA methylation changes have been reported in GWI but the role of histone acetylation in GWI has been less explored, despite its importance as an epigenetic mechanism for neurological disorders. MAIN METHODS: Male Sprague-Dawley rats were exposed to OP diisopropyl fluorophosphate (DFP, 0.5 mg/kg s.c., 5-d) and 6-m later brains were dissected for hippocampus. Western blotting, activity assays and chromatin immunoprecipitation (ChIP) were utilized for epigenetic analyses. Behavior was assessed using the Forced Swim Test (FST) and the Elevated Plus Maze (EPM). KEY FINDINGS: We observed a significant upregulation in HDAC1 protein along with a significant increase in HDAC enzyme activity in the hippocampus of DFP rats. A locus-specific ChIP study revealed decreases in H3K9ac at the brain derived neurotrophic factor (Bdnf) promoter IV coupled with a significant decrease in BDNF protein in DFP rat hippocampus. Treatment with HDAC inhibitor valproic acid reduced HDAC activity and decreased the FST immobility time in DFP rats. SIGNIFICANCE: Our research suggests that epigenetic alterations to histone acetylation pathways and decreased BDNF expression could represent novel mechanisms for GWI symptomatology and may provide new targets for developing effective drugs for GWI treatment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Histonas/metabolismo , Isoflurofato/administração & dosagem , Acetilação , Animais , Relação Dose-Resposta a Droga , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Ácido Valproico/farmacologia
16.
Neuropharmacology ; 191: 108571, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33878303

RESUMO

Status epilepticus (SE) is a medical emergency with continuous seizure activity that causes profound neuronal damage, morbidity, or death. SE incidents can arise spontaneously but mostly are elicited by seizurogenic triggers. Chemoconvulsants such as the muscarinic agonist pilocarpine and, organophosphates (OP) such as the pesticide diisopropylfluorophosphate (DFP) and, the nerve agent soman, can induce SE. Pilocarpine, DFP, and soman share a common feature of cholinergic crisis that transitions into a state of refractory SE, but their comparative profiles remain unclear. Here, we evaluated the comparative convulsant profile of pilocarpine, DFP, and soman to produce refractory SE and brain damage in rats. Behavioral and electrographic seizures were monitored for 24 h after exposure, and the extent of brain injury was determined by histological markers of neuronal injury and degeneration. Seizures were elicited rather slowly after pilocarpine as compared to DFP or soman, which caused rapid onset of spiking that swiftly developed into persistent SE. Time-course of SE activity after DFP was comparable to that after soman, a potent nerve agent. Diazepam controlled pilocarpine-induced SE, but it was ineffective in reducing OP-induced SE. All three agents produced modestly different degrees of neuronal injury and neurodegeneration in the brain. These results reveal distinct convulsant and neuronal injury patterns following exposure to cholinergic agonists, OP pesticides, and nerve agents. A battery of SE models, especially SE induced by cholinergic agents and other etiologies including epilepsy and brain tumors, is essential to identify novel anticonvulsant therapies for the management of refractory SE.


Assuntos
Isoflurofato/farmacologia , Pilocarpina/farmacologia , Soman/farmacologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia , Animais , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Diazepam/farmacologia , Hipocampo/patologia , Masculino , Neurônios/efeitos dos fármacos , Organofosfatos , Ratos , Ratos Sprague-Dawley
17.
Neurobiol Dis ; 152: 105276, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529768

RESUMO

Organophosphate pesticides and nerve agents (OPs), are characterized by cholinesterase inhibition. In addition to severe peripheral symptoms, high doses of OPs can lead to seizures and status epilepticus (SE). Long lasting seizure activity and subsequent neurodegeneration promote neuroinflammation leading to profound pathological alterations of the brain. The aim of this study was to characterize neuroinflammatory responses at key time points after SE induced by the OP, diisopropylfluorophosphate (DFP). Immunohistochemistry (IHC) analysis and RT-qPCR on cerebral tissue are often insufficient to identity and quantify precise neuroinflammatory alterations. To address these needs, we performed RT-qPCR quantification after whole brain magnetic-activated cell-sorting (MACS) of CD11B (microglia/infiltrated macrophages) and GLAST (astrocytes)-positive cells at 1, 4, 24 h and 3 days post-SE. In order to compare these results to those obtained by IHC, we performed, classical Iba1 (microglia/infiltrated macrophages) and GFAP (astrocytes) IHC analysis in parallel, focusing on the hippocampus, a brain region affected by seizure activity and neurodegeneration. Shortly after SE (1-4 h), an increase in pro-inflammatory (M1-like) markers and A2-specific markers, proposed as neurotrophic, were observed in CD11B and GLAST-positive isolated cells, respectively. Microglial cells successively expressed immuno-regulatory (M2b-like) and anti-inflammatory (M2a-like) at 4 h and 24 h post-SE induction. At 24 h and 3 days, A1-specific markers, proposed as neurotoxic, were increased in isolated astrocytes. Although IHC analysis presented no modification in terms of percentage of marked area and cell number at 1 and 4 h after SE, at 24 h and 3 days after SE, microglial and astrocytic activation was visible by IHC as an increase in Iba1 and GFAP-positive area and Iba1-positive cells in DFP animals when compared to the control. Our work identified sequential microglial and astrocytic phenotype activation. Although the role of each phenotype in SE cerebral outcomes requires further study, targeting specific markers at specific time point could be a beneficial strategy for DFP-induced SE treatment.


Assuntos
Inibidores da Colinesterase/toxicidade , Isoflurofato/toxicidade , Neuroglia/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Estado Epiléptico/induzido quimicamente , Animais , Masculino , Camundongos , Fenótipo
18.
Abdom Radiol (NY) ; 46(2): 406-407, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544164
19.
Neurotoxicology ; 83: 14-27, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33352274

RESUMO

The increasing number of cases involving the use of nerve agents as deadly weapons has spurred investigation into the molecular mechanisms underlying nerve agent-induced pathology. The highly toxic nature of nerve agents restrict their use in academic research laboratories. Less toxic organophosphorus (OP) based agents including diisopropylfluorophosphate (DFP) are used as surrogates in academic research laboratories to mimic nerve agent poisoning. However, neuropathology resulting from DFP-induced status epilepticus (SE) has not been compared directly to neuropathology observed following nerve agent poisoning in the same study. Here, the hypothesis that neuropathology measured four days after SE is the same for rats exposed to DFP and soman was tested. Adult Sprague-Dawley rats were injected with soman or DFP to induce SE. Cortical electroencephalography (EEG) was recorded prior to and during soman-induced SE. EEG power analysis of rats administered soman revealed prolonged electrographic SE similar to that of rats that endure uninterrupted SE following injection of DFP. Rats that experienced soman-induced SE displayed less hippocampal neuroinflammation and gliosis compared to rats administered DFP. Seizure-induced weight change, blood-brain barrier (BBB) leakiness and neurodegeneration in most seizure sensitive limbic brain regions were similar for rats that endured SE following soman or DFP. The amalgamated pathology score calculated by combining pathological measures (weight loss, hippocampal neuroinflammation, gliosis, BBB integrity and neurodegeneration) was similar in rats administered the OP agents. These findings support use of the rat DFP model of SE as a suitable surrogate for investigating some, but not all delayed consequences produced by nerve agents.


Assuntos
Encéfalo/patologia , Encefalite/patologia , Isoflurofato , Soman , Estado Epiléptico/patologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Ondas Encefálicas , Morte Celular , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Encefalite/induzido quimicamente , Encefalite/metabolismo , Encefalite/fisiopatologia , Gliose , Masculino , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia , Fatores de Tempo , Redução de Peso
20.
Neurotoxicology ; 82: 82-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232745

RESUMO

Acute intoxication by organophosphorus anticholinesterases (OPs) has been associated with depression and other neuropsychiatric disorders. We previously reported that adult male rats treated with diisopropylfluorophosphate (2.5 mg/kg, sc) showed acute cholinergic signs followed by changes (increased immobility/decreased swimming) in the forced swim test (a measure of behavioral despair) for at least one month. This study was conducted to evaluate the further persistence of changes in the forced swim test out to 4 months and to compare responses in a sucrose preference test, a measure of anhedonia. Adult male rats were treated with vehicle (peanut oil, 1 mL/kg, sc) or DFP (2.0, 2.25 or 2.5 mg/kg) followed by sacrifice 4 h later for measurement of OP-sensitive serine hydrolases (cholinesterase [ChE], fatty acid amide hydrolase [FAAH], and monoacylglycerol lipase [MAGL]) in hippocampus. Additional rats were treated similarly and evaluated for functional signs of acute toxicity from 30 min to 6 days, and then motor activity, forced swim behavior and sucrose preference at approximately 1 week, 1 month and 4 months after dosing. All dosages of DFP elicited serine hydrolase inhibition (ChE, 92-96 %; FAAH, 46-63 %; MAGL, 26-33 %). Body weight was reduced in all DFP-treated groups during the first two weeks, and lethality was noted with the higher dosages. Involuntary movements were elicited in all DFP treatment groups during the first week, but both time of onset and rate of recovery were dose-related. There was a significant reduction in ambulation at one week after the highest dosage (2.5 mg/kg), but no other significant locomotor changes were noted. Immobility was increased and swimming was decreased in the forced swim test at all three time-points by 2.25 mg/kg DFP, and at 2 of 3 time-points by the other dosages. While length of water deprivation and time after DFP dosing affected sucrose preference, DFP treatment had no main effect. We conclude that the forced swim test (a measure of behavioral despair/coping mechanism for inescapable stress) is a robust and persistent neurobehavioral consequence of acute DFP intoxication while sucrose preference, a measure of anhedonia and a common symptom of major clinical depression, is not affected.


Assuntos
Isoflurofato/efeitos adversos , Anedonia/efeitos dos fármacos , Animais , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Isoflurofato/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Sacarose , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...